Introduction to Symposium: Epigenetics and Home Visiting

Ronald Seifer
E. P. Bradley Hospital
Brown University

HARC Collaborative Science of Home Visiting Meeting
January 2018
Purpose of the Symposium

- Introduction to epigenetics
- Integration with developmental science
- Relevance to understanding adversity
- Intergenerational risk and resilience
- Examples of studies
- Future applications to home visiting research agenda
Basic Genetics

- Humans have 23 pairs of chromosomes
- DNA with 5 canonical bases (adenine, thymine/uracil, cytosine, guanine)
- Each member of chromosome/DNA pair inherited from one parent respectively
- Chromosomes each contain many genes
- Genes can have many variants
- DNA transcribed \rightarrow proteins (via RNA)
- More or less …
Schematic and Common Terms

- genome
- locus
- gene
- Site
 - [SNPs within sites]
Transcription/Translation

- RNA polymerase binds to promoter on gene.
- DNA strands are pried apart → template strand.
- Synthesize mRNA on template strand; zips DNA back as it goes.
- mRNA moves from nucleus to ribosome.
- Translation via tRNA to specific amino acids (based on 3-unit codons).
- We’re all just a bunch of proteins.
Stuff Happens

- Mutations across generations
- DNA damage within individuals (chemical and structural processes within cells)
- Repair processes occur when stuff happens
- Repairs are not always perfect
- Details are beyond our pay grade …
Basic Epigenetics

- DNA does not change across the lifespan
- Modifiers of DNA do occur across the lifespan (disrupting DNA structure)
- Multiple non-canonical base pairings; most discussed is 5-methyldeoxycytidine
- Non-canonical bases interact with complex geometric structure of DNA
- Regulate (often silence/dampen) DNA transcription/translation
Telomeres

- Telomeres are found at ends of DNA
- Buffer against stuff happening
- More telomeres indicate more buffering
- Telomeres are reduced during DNA replication/cell division
- Telomere replication can occur (telomerase)
- Implicated in aging and abnormal cell formation (cancer)
- Varies among individuals
How Do We Know any of This in Individuals?

- DNA is in cell nuclei
- Isolate DNA from cells (blood, saliva, other tissues)
- Sequence DNA (identify individual patterns of alleles – gene variation)
- Examine methylation at CpG sites (cytosine followed by guanine → methylation site) via pyrosequencing
- Telomere assays (TRF/QFISH, STELA, etc)
Why Should Home Visiting Researchers Care?

- Stress and adversity set off many chemical responses in humans
- Stress affects methylation of genes (can occur in both directions)
- Stress affects telomere length (generally shortening)
- Genes produce many things affecting behavior
- Cross-generational transmission (??????)
Gene Products and Behavior

- HPA axis
 [cortisol production, stress response]
- Serotonin [mood]
- Immune system cytokines
 [inflammation]
- Dopamine [movement, reward, attention]
- Neural and non-neural implications
- Promote/inhibit cognitive, regulatory, and social processes + physical health implications
Gene Product Example
Gene Products and Complex Systems

- CRHR$_1$ (corticotrophin releasing hormone → cortisol)
- NR$_3$C$_1$ (glucocorticoid receptor)
- FKBP$_5$ (binding protein)
Effects are Far-Reaching
What Immediate Impact Might This Have on Home Visiting?

- Addressing preliminary research questions regarding epigenetic characteristics in HV cohorts (one example to follow)
- Identifying epigenetic changes associated with HV participation (parents and children)
- Identifying genetic/epigenetic predictors of HV treatment success
What Might the Future Hold for Home Visiting Research?

- **Precision home visiting:**
 - Identifying who will benefit from HV
 - Tailoring HV approaches to individual families
 - Tailoring HV personnel for individual families

- Development of gene therapies to promote resilience in the face of adversity

- in a galaxy far far away ...
Important Considerations

- Epigenetic change is one mechanism for biological encoding of experience – an explanation for enduring behavioral response to stress.
- Epigenetic change can be rapid.
- Epigenetic change can move in all directions (reversibility).
- This is not genetic determinism – this is a reflection of an open dynamic system.
Some Cautionary Notes

- Behavioral science has incorporated only a portion of what is known about epigenetics.
- The research is in its infancy; little has been replicated.
- Applications to real-life HV need to be thoroughly tested as we move forward.
- Good ideas don’t always yield effective interventions that help families.